第三部分 实训篇 PLC 技术的应用实训和综合实训

第六章 PLC 的应用实训

实训一 水塔水位的 PLC 模拟控制

(1) 进一步熟悉 PLC 基本指令的用法。

(2) 进一步熟悉使用 GX Developer 编程软件编制 PLC 程序,并能下载到 PLC 中调试运行。

- (1) 三菱主机单元一台。
- (2) 水塔水位模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

程序运行后,按下启动按钮,然后再按下按钮 SB2,指示灯 L1 亮,马达指示灯 M 亮;按 下按钮 SB1,指示灯 L2 亮,马达指示灯 M 灭;若水箱处于低水位,按下按钮 SB4,指示灯 L3 亮,指示灯 Y 亮;水箱高水位时,按下按钮 SB3,指示灯 Y 灭,指示灯 L4 亮;若程序中 加入闪烁部分,则水箱或者是水塔高低水位按钮按下时,低水位时指示灯 O₀闪烁,高水位时 O₁闪烁。按下停止按钮,系统停止运行。

2. 系统控制模板

水塔水位模拟控制系统的模板示意图如图 6-1 所示。

图 6-1 水塔水位模拟控制系统的模板示意图

水塔水位模拟控制系统的输入/输出分配如表 6-1 所示。

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
按钮 SB1	X000	指示灯 L1	Y000		
按钮 SB2	X001	指示灯 L2	Y001		
按钮 SB3	X002	指示灯 L3	Y002		
按钮 SB4	X003	指示灯 L4	Y003		
启动按钮	X004	马达指示灯 M	Y004		
停止按钮	X005	指示灯 Y	Y005		
		报警指示灯 O ₀	Y006		
		报警指示灯 O1	Y007		

表 6-1 水塔水位模拟控制系统的 I/O 分配表

用三菱可编程控制器实现的水塔水位模拟控制系统的输入/输出接线如图 6-2 所示。

图 6-2 水塔水位模拟控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"水塔水位"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮后, 然后再按 SB1、SB2、SB3、SB4 按钮, 观察现象。

2. 梯形图(未加闪烁部分)。水塔水位模拟控制系统梯形程序图如图 6-3 所示。

图 6-3 水塔水位模拟控制系统梯形程序图 (续)

(2) 指令表(未加闪烁部分)如下所示:

0	LD	X004	18	ANI	X000
1	OR	MO	19	OVT	¥000
2	ANI	X005	20	LD	X003
3	OVT	MO	21	OR	¥005
4	LD	X001	22	ANI	X002
5	OR	X004	23	AND	MO
6	AND	MO	24	ANI	X001
7	ANI	X000	25	OVT	¥005
8	ANI	X003	26	LD	X002
9	OVT	Y004	27	OR	¥002
10	LD	X000	28	AND	MO
11	OR	Y001	29	AND	X003
12	AND	MO	30	OVT	¥002
13	ANI	X001	31	LD	X003
14	OVT	Y001	32	OR	¥003
15	LD	X001	33	AND	MO
16	OR	¥000	34	ANI	X002
17	AND	MO	35	OVT	¥003
			36	END	

如果加入闪烁部分,试编写梯形图。

实训二 交通灯的 PLC 模拟控制

- (1) 进一步熟悉定时器的基本使用方法。
- (2) 根据控制要求,掌握 PLC 的编程方法和程序调试方法。
- (3) 掌握时序循环设计法的用法。
- (4) 了解用 PLC 解决一个实际问题的全过程。

- (1) 三菱主机单元一台。
- (2) 交通灯模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

2. 实训任务及分析

十字路口交通灯的控制系统状态如图 6-4 所示。信号灯受一个启动按钮控制,当启动按钮 接通时,信号灯系统开始工作,且先南北红灯亮,东西绿灯亮。当按下停止按钮时,所有信号 灯都熄灭。

南北红灯维持 20s,在南北红灯亮的同时,东西绿灯也亮,并维持 15s。在东西绿灯熄灭时,东西黄灯亮,并维持 5s。到 5s 时,东西黄灯熄灭,东西红灯亮,同时,南北红灯熄灭, 绿灯亮。东西红灯亮维持 20s,同时南北绿灯亮维持 15s,亮 15s 后熄灭。这时南北黄灯亮, 维持 5s 后熄灭,这时南北红灯亮,东西绿灯亮,周而复始。时序图如图 6-4 所示。按下停止 按钮,系统停止运行。

2. 系统控制模板

交通灯模拟控制系统模板示意图如图 6-5 所示。

图 6-5 交通灯模拟控制系统的模板示意图

1/0分配表

交通灯模拟控制系统的输入/输出分配如表 6-2 所示。

表 6-2 交通灯模拟控制系统的 I/O 分配表

输入	信号	输出信号			
名称 输入点编号		名称	输出点编号		
启动按钮	X000	南北绿灯	Y000		
停止按钮	X001	南北黄灯	Y001		
		南北红灯	Y002		
		东西绿灯	Y003		

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
		东西黄灯	Y004		
		东西红灯	Y005		

用三菱可编程控制器实现的交通灯模拟控制系统的输入/输出接线如图 6-6 所示。

图 6-6 交通灯模拟控制系统的 I/O 接线图

- (1) 利用 GX Developer 编程软件来编制程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮后,观察现象。

(1) 梯形图。交通灯模拟控制系统梯形程序图如图 6-7 所示。

续表

可编程控制器实验与实训教程

图 6-7 交通灯模拟控制系统梯形程序图

(2) 指令表如下所示:

0	LD	X000		18	OUT	TЗ	K50	30	LD	T1
1	OR	MO		21	LD	MO		31	ANI	T 3
2	ANI	X001		22	ANI	T1		32	OUT	¥003
3	OUT	MO		23	OUT	¥000		33	LD	T1
4	LD	MO		24	LD	MO		34	ANI	T2
5	ANI	TЗ		25	ANI	TO		35	OVT	¥004
6	OUT	TO	K150	26	OUT	¥001		36	LD	T2
9	LD	TO		27	LD	TO		37	ANI	T 3
10	OUT	T1	K50	28	ANI	T1		38	OUT	¥005
13	LD	T1		29	OVT	¥002		39	END	
14	OUT	T2	K150							
17	LD	T2								

根据如图 6-8 所示的时序图要求,试编写交通灯系统的梯形图。

图 6-8 交通灯控制时序图

实训三 艺术彩灯的 PLC 模拟控制

- (1) 加强时序循环设计法的应用。
- (2) 学会用 PLC 解决实际问题,进一步熟悉编程软件的使用方法。
- (3) 通过训练,提高编程技巧。

实训器材

- (1) 三菱主机单元一台。
- (2) 艺术彩灯模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

本控制任务是 8 盏彩灯 A、B、C、D、E、F、G、H 呈环形分布,按下启动按钮,8 盏灯泡同时亮 1s,即 A、B、C、D、E、F、G、H 同时亮 1s;接着 8 盏灯泡按逆时针方向轮流各亮 1s,即 A 亮 1s,B 亮 1s,C 亮 1s,D 亮 1s,E 亮 1s,F 亮 1s,G 亮 1s,H 亮 1s;接下来 8 盏灯泡同时亮 1s;然后 8 盏灯泡按顺时针方向轮流各亮 1s,即 H 亮 1s,G 亮 1s,F 亮 1s,E 亮 1s,D 亮 1s,C 亮 1s,B 亮 1s,A 亮 1s;然后按此顺序重复执行。按下停止按钮,所有灯灭。

2. 系统控制模板

艺术彩灯模拟控制系统的模板示意图如图 6-9 所示。

图 6-9 艺术彩灯模拟控制系统的模板示意图

艺术彩灯模拟控制系统的输入/输出分配如表 6-3 所示。

表 6-3 艺术彩灯模拟控制系统的 I/O 分配表

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	状态指示灯 A	Y000		
停止按钮	X001	状态指示灯 B	Y001		
		状态指示灯 C	Y002		
		状态指示灯 D	Y003		
		状态指示灯 E	Y004		
		状态指示灯 F	Y005		
		状态指示灯 G	Y006		
		状态指示灯 H	Y007		

用三菱可编程控制器实现的艺术彩灯模拟控制系统的输入/输出接线如图 6-10 所示。

- 68 ·

- (1)利用 GX Developer 编程软件来编制程序。
- (2) 根据 I/O 接线图接线。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察各个指示灯的变化。

(1) 梯形图。艺术彩灯模拟控制系统的梯形程序图如图 6-11 所示。

69 -

- 70 ·

- 71 -

图 6-11 艺术彩灯模拟控制系统梯形程序图(续)

0	LD	X000	29	ORB		58	ANI	T14
1	OR	MO	30	LD	T8	59	ORB	
2	ANI	X001	31	ANI	T9	60	OUT	¥005
3	OUT	MO	32	ORB		61	LD	MO
4	LD	MO	33	LD	T15	62	ANI	TO
5	ANI	T1	34	ANI	T16	63	LD	T5
6	LD	T8	35	ORB		64	ANI	T6
7	ANI	T9	36	OUT	¥003	65	ORB	
8	ORB		37	LD	MO	66	LD	T8
9	LD	T17	38	ANI	TO	67	ANI	T9
10	ANI	T18	39	LD	TЗ	68	ORB	
11	ORB		40	ANI	T4	69	LD	T12
12	OUT	Y000	41	ORB		70	ANI	T13
13	LD	MO	42	LD	T8	71	ORB	
14	ANI	TO	43	ANI	T9	72	OUT	¥006
15	LD	T1	44	ORB		73	LD	MO
16	ANI	T2	45	LD	T14	74	ANI	TO
17	ORB		46	ANI	T15	75	LD	T6
18	LD	T8	47	ORB		76	ANI	T7
19	ANI	T9	48	OUT	Y004	77	ORB	
20	ORB		49	LD	MO	78	LD	T8
21	LD	T16	50	ANI	TO	79	ANI	Т9
22	ANI	T17	51	LD	T4	80	ORB	
23	ORB		52	ANI	T5	81	LD	T11
24	OVT	¥002	53	ORB		82	ANI	T12
25	LD	MO	54	LD	T8	83	ORB	
26	ANI	TO	55	ANI	T9	84	OUT	¥007
27	LD	T2	56	ORB		85	LD	MO
28	ANI	T 3	57	LD	T13	86	ANI	TO

(2)	指令表如下所示:

87	LD	T7		127	OUT	T6	K10
88	ANI	T8		130	LD	T7	
89	ORB			131	OVT	T8	K10
90	LD	T8		134	LD	T8	
91	ANI	T9		135	OVT	T9	K10
92	ORB			138	LD	T9	
93	LD	T10		139	OVT	T10	K10
94	ANI	T11		142	LD	T10	
95	ORB			143	OVT	T11	K10
96	OVT	Y010		146	LD	T11	
97	LD	MO		147	OVT	T12	K10
98	ANI	T19		150	LD	T12	
99	OVT	TO	K10	151	OVT	T13	K10
102	LD	то		154	LD	T13	
103	OUT	T1	K10	155	OVT	T14	K10
106	LD	T1		158	LD	T14	
107	OVT	T2	K10	159	OVT	T15	K10
110	LD	T2		162	LD	T15	
111	OVT	T 3	K10	163	OUT	T16	K10
114	LD	T3		166	LD	T16	
115	OVT	T4	K10	167	OUT	T17	K10
118	LD	T4		170	LD	T17	
119	OUT	T5	K10	171	OUT	T18	K10
122	LD	T5		174	LD	T18	
123	OVT	T6	K10	175	OUT	T19	K10
126	LD	T6		178	END		

思考题

试利用移位寄存器指令、区间复位指令编制梯形图程序。

实训四 LED 数码管显示的 PLC 模拟控制

(1) 掌握 LED 数码管显示的基本原理。

(2) 进一步熟悉使用 GX Developer 编程软件来编制 PLC 程序,并能下载到 PLC 中调试运行。

- 73 -

- (1) 三菱主机单元一台。
- (2) LED 数码管模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

按下启动按钮后,由8组LED发光二极管模拟的数码管开始显示:先是一段段显示,显示的次序是A段、B段、C段、D段、E段、F段、G段、DP段。随后显示数字及字符,显示的次序是0、1、2、3、4、5、6、7、8、9、A、b、C、d、E、F,H,再返回初始显示,并且循环下去。按下停止按钮,数码管停止显示。面板上的A、B、C、D、E、F、G用发光二极管模拟输出。

由控制任务可以看出,每一段显示是有先后顺序的,当第一段显示完了以后第二段才能 显示,依次往后进行。所以该程序具有很强的时序性,要用定时器来实现。而后面的数字及字 母的显示都是由这7段数码管中的某些段组成的。所以只要在原有的程序上面进行修改就可以 实现数字及字母的显示。以显示0为例,当需要显示0的时候,只要将G段的数码管断开就 可以显示0了。其他的也是同样的道理。

2. 系统控制模板

LED 数码管模拟控制模板示意图如图 6-12 所示。

图 6-12 LED 数码管模拟控制模板示意图

LED 数码管显示的输入/输出分配如表 6-4 所示。

输出	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	A段	Y000		
停止按钮	X001	B 段	Y001		
		C 段	Y002		
		D段	Y003		
		E段	Y004		
		F段	Y005		
		G段	Y006		
		DP 段	Y007		

表 6-4 LED 数码管显示的 I/O 分配表

用三菱可编程控制器实现的 LED 数码管显示系统控制的输入/输出接线如图 6-13 所示。

图 6-13 LED 数码管显示的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制程序。
- (2) 根据 I/O 接线图接线。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮观察 A、B、C、D、E、F、G 各段的变化。
- (5) 按下启动按钮观察数码管显示情况。

(1) 梯形图。LED 数码管显示梯形程序图如图 6-14 所示。

77 -

图 6-14 LED 数码管显示梯形程序图(续)

(2) 指令表如下所示:

0	LD	X000		33	ANB			66	OR	T16	
1	OR	MO		34	LDI	T19		67	ANB		
2	OR	MЗ		35	OR	T21		68	LDI	T18	
3	ANI	X001		36	ANB			69	OR	T19	
4	ANI	T24		37	ANI	T22		70	ANB		
5	OVT	MO		38	OVT	Y001		71	ANI	T23	
6	LD	MO		39	MPP			72	OUT	¥003	
7	OVT	TO	K10	40	OUT	T2	K10	73	MPP		
10	LD	TO		43	LD	T2		74	OUT	T4	K10
11	MPS			44	MPS			77	LD	T4	
12	LDI	T9		45	LDI	T10		78	MPS		
13	OR	T10		46	OR	T11		79	LDI	T 9	
14	ANB			47	ANB			80	OR	T10	
15	LDI	T12		48	LDI	T20		81	ANB		
16	OR	T13		49	OR	T21		82	LDI	T11	
17	ANB			50	ANB			83	ANI	T12	
18	LDI	T19		51	ANI	T22		84	OR	T14	
19	OR	T20		52	OVT	¥002		85	ANB		
20	ANB			53	MPP			86	LDI	T15	
21	LDI	T21		54	OVT	TЗ	K10	87	OR	T16	
22	OR	T22		57	LD	ТЗ		88	ANB		
23	ANB			58	MPS			89	LDI	T17	
24	OVT	Y000		59	LDI	T9		90	OR	T18	
25	MPP			60	OR	T10		91	ANB		
26	OVT	T1	K10	61	ANB			92	OUT	Y004	
29	LD	T1		62	LDI	T12		93	MPP		
30	MPS			63	OR	T13		94	OUT	T5	K10
31	LDI	T13		64	ANB			97	LD	T5	
32	OR	T15		65	LDI	T15		98	MPS		

第六章 PLC 的应用实训 6

LD 172 T15 99 LDI Τ9 128 ΟVT Τ7 K10 173 OVT T16 K10 100 ANI T10 131 LD Τ7 176 T16 LD 101 OR T12 132 MPS 177 OVT T17 K10 102 ANB 133 ANI Μ1 180 LD T17 103 LDI T15 Τ9 134 ANT T18 K10 181 OVT 104 OR T16 135 ANT T10 105 184 LD T18 ANB 136 OVT Y007 185 OVT T19 K10 106 LDI T21 137 MPP 107 OR T22 OVT K10 188 LD T19 138 Τ8 T20 K10 189 OVT 108 ANB 141 LD Τ8 192 LD T20 109 OVT ¥005 ANT 142 Τ9 T21 K10 193 OUT 110 MPP 143 OVT M1 111 OVT Τ6 K10 196 LD T21 144 LD Τ8 T22 K10 114 LD Τ6 OVT Τ9 K10 197 ΟVT 145 115 MPS 200 LD T22 Τ9 148 LD ANI T23 116 MO 201 ΟVT K10 149 OVT T10 K10 117 LDI Τ9 204 LD T23 152 LD T10 T21 ΟVT K10 118 OR 205 T24 153 OVT T11 K10 119 ANB 208 LD T24 156 LD T11 120 LDI T15 209 ΟVT M2 T12 K10 157 OVT 121 T16 M2 OR 210 LD 160 LD T12 122 ANB 211 PLF ΜЗ K10 161 OVT T13 123 LDI T20 213 END 164 LD T13 124 OR T21 165 OVT T14 K10 125 ANB 168 LD T14 126 OVT Y006 169 OVT T15 K10 127 MPP

实训五 天塔之光的 PLC 模拟控制

(1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和 调试。

(2) 了解天塔之光的工作原理。

(3) 掌握用 PLC 解决一个实际问题的全过程。

- (1) 三菱主机单元一台。
- (2) 天塔之光模拟控制单元一块。

(3) 计算机一台。

(4) 连接导线若干。

1. 实训任务及分析

按下启动按钮后,按规律显示: L1→L1、L2→L1、L3→L1、L4→L1、L5→L1、L3、L5 →L1→L2、L3、L4、L5→L6、L7→L1、L6→L1、L7→L1→L1、L2、L3、L4、L5→L1、L2、 L3、L4、L5、L6、L7→L1、L2、L3、L4、L5、L6、L7→L1……如此循环,周而复始。按下 停止按钮,系统停止工作。

根据控制要求可知,先是L1灯亮,然后是L2、L1一起亮,L3、L1一起亮,L4、L1一 起亮,L5、L1一起亮,L1、L3、L5一起亮,L1亮,L2、L3、L4、L5一起亮,L6、L7一起 亮,L1、L6一起亮,L1、L7一起亮,L1亮,L1、L2、L3、L4、L5一起亮,L1、L2、L3、 L4、L5、L6、L7一起亮,L1、L2、L3、L4、L5、L6、L7一起亮,L1亮……如此循环点亮, 每段显示设计间隔时间为1s。

2. 系统控制模板

天塔之光模拟控制系统的模板示意图如图 6-15 所示。

图 6-15 天塔之光模拟控制系统的模板示意图

天塔之光模拟控制系统的输入/输出分配如表 6-5 所示。

 输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	模拟指示灯 L1	Y000		
停止按钮	X001	模拟指示灯 L2	Y001		
		模拟指示灯 L3	Y002		
		模拟指示灯 L4	Y003		
		模拟指示灯 L5	Y004		
		模拟指示灯 L6	Y005		
		模拟指示灯 L7	Y006		

表 6-5 天塔之光模拟控制系统的 I/O 分配表

用三菱可编程控制器实现的天塔之光模拟控制系统的输入/输出接线如图 6-16 所示。

图 6-16 天塔之光模拟控制系统的 I/O 接线图

- (1) 在计算机上编写好"天塔之光"控制程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将程序调试好后下载到 PLC 中。
- (4) 观察实训现象。

(1) 梯形图。天塔之光模拟控制系统的梯形程序图如图 6-17 所示。

- 82 -

第六章 PLC 的应用实训

- 83 -

(2) 指令表达	如下所示:							
1	OR	MO		69	IJ	HO	105	ANI	
2	ANI	X001		70	ANI	17	106	ORB	
з	OUT	MO		71	LD	T11	107	LD	
4	LD	MO		72	ANI	T17	108	ANI	
5	ANI	T17		73	ORB		109	ORB	
6	OUT	TO	K10	74	OUT	¥001	110	OVT	
9	LD	TO		75	LD	TO	111	LD	
10	OUT	T1	K10	76	ANI	T1	112	ANI	
13	LD	T1		77	LD	Т4	113	LD	
14	OUT	T2	K10	78	ANI	T5	114	ANI	
17	LD	T2		79	ORB		115	ORB	
18	OUT	T3	K10	80	LD	T7	116	LD	
21	LD	T3		81	ANI	T10	117	ANI	
22	OUT	Τ4	K10	82	ORB		118	ORB	
25	LD	Τ4		83	LD	T14	119	LD	
26	OUT	T5	K10	84	ANI	T17	120	ANI	
29	LD	T5		85	ORB		121	ORB	
30	OUT	т6	K10	86	OUT	¥001	122	OVT	
33	LD	T6		87	LD	T1	123	LD	
34	OUT	T7	K10	88	ANI	T2	124	ANI	
37	LD	T7		89	LD	T5	125	LD	
38	OUT	T10	K10	90	ANI	T6	126	ANI	
41	LD	T10		91	ORB		127	ORB	
42	OVT	T11	K10	92	Ш	17	128	OVT	Y005
45	LD	T11		93	ANI	T10	129	LD	T10
46	OUT	T12	K10	94	ORB		130	ANI	T11
49	LD	T12		95	ш	T14	131	LD	T12
50	OUT	T13	K10	96	ANT	T17	132	ANI	T13
53	LD	T13		97	ORB		133	ORB	
54	OUT	T14	K10	98	OUT	¥002	134	LD	T16
57	LD	T14		99	IJ	T2	135	ANI	T17
58	OUT	T15	K10	100	ANI	T3	136	ORB	
61	LD	T15		101	IJ	T4	137	OVT	Y006
62	OVT	T16	K10	102	ANI	T5	138	END	
65	LD	T16		103	ORB				

实训六 邮件分拣系统的 PLC 模拟控制

(1) 掌握邮件分拣机的控制原理。

(2)用 PLC 构成邮件分拣控制系统,熟练掌握 PLC 编程和程序调试方法。

实训器材

- (1) 三菱主机单元一台。
- (2) 邮件分拣模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

邮件分拣系统的 PLC 控制系统设计与调试,要求启动后红灯 Q1 亮,表示有邮件送来, 拨码器模拟邮件的邮码,从拨码器到邮码的正常值为 1、2、3、4、5,若是此 5 个数字中的任 意一个,则相应的灯亮并且 Q2 也亮,电机 M5 运行,将邮件分拣到邮箱内,完成后 Q2 熄灭, L1 亮,表示可以继续分拣邮件。按下停止按钮,系统停止运行。

2. 系统控制模板

邮件分拣模拟控制系统模板示意图如图 6-18 所示。

图 6-18 邮件分拣模拟控制系统模板示意图

邮件分拣模拟控制系统的 I/O 分配如表 6-6 所示。

	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	指示灯 Q1	Y000		
停止按钮	X001	指示灯 Q2	Y001		
"欧洲" 按钮	X002	指示灯 L1	Y002		
"杭州" 按钮	X003	指示灯 L2	Y003		
"南京" 按钮	X004	指示灯 L3	Y004		
"郑州" 按钮	X005	指示灯 L4	Y005		
"北京" 按钮	X006	指示灯 L5	Y006		

表 6-6 邮件分拣模拟控制系统的 I/O 分配表

用三菱可编程控制器实现的邮件分拣模拟控制系统的输入/输出接线如图 6-19 所示。

图 6-19 邮件分拣模拟控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"邮件分拣"的程序。
- (2) 根按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。

- 86 -

(4) 按下启动按钮,观察各个指示灯的变化情况。

(5) 启动后分别按下"欧洲"、"杭州"、"南京"、"郑州"、"北京"按钮,观察指示灯的 变换情况。

(1) 梯形图。邮件分拣模拟控制系统的梯形程序图如图 6-20 所示。

87 -

(2)指令	表如下所示:				
0	LD	X000		27	LD	T1
1	OR	MO		28	ANI	M1
2	ANI	X001		29	OVT	¥002
3	OUT	MO		30	LD	T2
4	LDI	T5		31	ANI	M1
5	AND	MO		32	ANI	M2
6	MPS			33	OVT	¥003
7	ANI	TO		34	LD	ТЗ
8	OVT	¥000		35	ANI	M1
9	MPP			36	ANI	M2
10	OUT	TO	K20	37	ANI	MЗ
13	OUT	T1	K40	38	OVT	Y004
16	OUT	T2	K60	39	LD	T4
19	OUT	T3	K80	40	ANI	M1
22	OUT	T4	K100	41	ANI	M2
25	LD	TO		42	ANI	MЗ
26	OUT	Y001		43	ANI	M4

- 88 -

44	OUT	¥005	66	OR	MS
45	LD	X002	67	AND	MO
46	OR	M1	68	ANI	T5
47	AND	MO	69	OVT	M5
48	ANI	T5	70	LD	M1
49	OVT	M1	71	AND	Y001
50	LD	X003	72	LD	M2
51	OR	M2	73	AND	¥002
52	AND	MO	74	ORB	
53	ANI	T5	75	LD	MЗ
54	OVT	M2	76	AND	¥003
55	LD	X004	77	ORB	
56	OR	M3	78	LD	M4
57	AND	MO	79	AND	Y004
58	ANI	T5	80	ORB	
59	OVT	M3	81	LD	M5
60	LD	X005	82	AND	¥005
61	OR	M4	83	ORB	
62	AND	MO	84	OVT	¥006
63	ANI	T5	85	OVT	T5
64	OVT	M4	88	END	
65	LD	X006			

实训七 装配流水线的 PLC 模拟控制

K20

- (1) 掌握装配流水线的基本控制原理。
- (2) 进一步熟练使用 GX Developer 编程软件来编制程序,并会下载到 PLC 中调试运行。

- (1) 三菱主机单元一台。
- (2) 装配流水线模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

按下启动按钮, 1、2号工位对应的灯亮, 2s后3、4号工位对应的灯亮, 再过2s后A对

应的灯亮,5s后5、6号工位对应的灯亮,2s后7、8号工位对应的灯亮,2s后B对应的灯亮, 5s后9、10工位对应的灯亮,2s后11、12号工位对应的灯亮,2s后C对应的灯亮,5s后13、 14号工位对应的灯亮,2s后15、16号工位对应的灯亮,2s后H对应的灯亮。按下停止按钮, 系统停止工作。

设计一个装配流水线的 PLC 控制系统,本装置中,传送带共有 16 个工位。工件从 1 号位 装入,依次经过 2 号位、3 号位……16 号工位。在这个过程中,工件分别在 A (操作 1)、B (操作 2)、C (操作 3) 三个工位完成三种装配操作,经最后一个工位送入仓库。工件先是经 过 1、2、3、4 号工位,在到达 A 时完成第一种装配操作,接着经过 5、6、7、8 号工位,在 到达 B 时完成第二种装配操作,然后经过 9、10、11、12 号工位,在到达 C 时完成第三种装 配操作,再经过 13、14、15、16 号工位,最后将最后一个工位送入仓库。在这其中要用到自 锁指令、互锁指令和定时器。

2. 系统控制模板

装配流水线模拟控制系统模板示意图如图 6-21 所示。

图 6-21 装配流水线模拟控制系统模板示意图

装配流水线模拟控制系统的输入/输出分配如表 6-7 所示。

表 6-7 装配流水线模拟控制的 I/O 分配表

输入	信号	输出信号				
名称	输入点编号	名称	输出点编号			
启动按钮	X000	操作A指示灯	Y000			
停止按钮	X001	操作 B 指示灯	Y001			
		操作C指示灯	Y002			

	信号	输出信号				
名称	输入点编号	名称	输出点编号			
		仓库H指示灯	Y003			
		工位指示灯 Q10	Y010			
		工位指示灯 Q11	Y011			
		工位指示灯 Q12	Y012			
		工位指示灯 Q13	Y013			
		工位指示灯 Q14	Y014			
		工位指示灯 Q15	Y015			
		工位指示灯 Q16	Y016			
		工位指示灯 Q17	Y017			

1/0接线图

用三菱可编程控制器实现的装配流水线模拟控制系统的输入/输出接线如图 6-22 所示。

图 6-22 装配流水线模拟控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"装配流水线"程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。

- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察实训现象。

(1) 梯形图。装配流水线模拟控制系统的梯形程序图如图 6-23 所示。

- 92 -

图 6-23 装配流水线模拟控制系统的梯形程序图(续)

0	LD	X000		20	OUT	Y000		42	LD	T4	
1	OR	Y010		21	OUT	MO		43	OR	Y001	
2	ANI	Y011		22	OVT	T2	K50	44	ANI	M3	
3	ANI	X001		25	LD	T2		45	ANI	X001	
4	OUT	Y010		26	OR	Y012		46	OVT	Y001	
5	OUT	TO	K20	27	ANI	Y013		47	OVT	M2	
8	LD	TO		28	ANI	X001		48	OVT	T5	K50
9	OR	Y011		29	OVT	Y012		51	LD	T5	
10	ANI	MO		30	OVT	M1		52	OR	Y014	
11	ANI	X001		31	OVT	TЗ	K20	53	ANI	Y015	
12	OUT	Y011		34	LD	T3		54	ANI	X001	
13	OUT	T1	K20	35	OR	Y013		55	OVT	Y014	
16	LD	T1		36	ANI	M2		56	OVT	MЗ	
17	OR	MO		37	ANI	X001		57	OVT	T6	K20
18	ANI	M1		38	OUT	Y013		60	LD	T6	
19	ANI	X001		39	OUT	T4	K20	61	OR	Y015	

- 93 -

可编程控制器实验与实训教程

6

62	ANI	M4		74	OVT	T10	K50	88	ANT	M6	
63	ANI	X001		77	LD	T10		89	ANI	X001	
64	OUT	¥015		78	OR	Y016		90	OVT	¥017	
65	OUT	T 7	K20	79	ANI	Y017		91	OVT	T12	K20
68	LD	Τ7		80	ANI	X001		94	LD	T12	
69	OR	¥002		81	OVT	Y016		95	OR	¥003	
70	ANI	MS		82	OVT	MS		96	ANI	X001	
71	ANI	X001		83	OVT	T11	K20	97	OVT	¥003	
72	OUT	¥002		86	LD	T11		98	OVT	M6	
73	OVT	M4		87	OR	Y017		99	END		
10	001	10.4		2.				20			

实训八 自动轧钢机的 PLC 模拟控制

- (1) 掌握自动轧钢机的控制原理。
- (2) 完成自动轧钢机运行控制程序设计,利用模板完成操作训练。
- (3) 通过本实训,提高学生的逻辑能力,掌握 PLC 控制系统的一般设计和安装方法。

- (1) 三菱主机单元一台。
- (2) 自动轧钢机模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

按下 DN 按钮,电动机 M1、M2 运行,传送钢板,电动机 M3 运行,钢板到位,液压上升,钢板也上升,到一定高度后,左边传送带开始回送钢板(L5 亮,液压指示灯 L4 灭),这样便完成一个工作循环。

当按下启动按钮时,先进行工作复位(工作复位指示灯亮),之后轧钢子下降(灯 DN 亮), 右边输送带开始送钢板(L1 亮),接着钢板过轧钢口的同时左边输送带也停止工作(L2、L3 亮,L1 灭)。过完后滚轴停止工作(L2、L3 灭),下一步液压上升,钢板也上升(L4 亮)。到 一定高度后,左边传送带开始回送钢板(L5 亮,液压指示灯 L4 灭),这样就完成一个工作循 环。当按下停止按钮后,系统停止工作。

2. 系统控制模板

自动轧钢机模拟控制系统的模板示意图如图 6-24 所示。

图 6-24 自动轧钢机模拟控制系统的模板示意图

自动轧钢机模拟控制系统的输入/输出分配如表 6-8 所示。

	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	工件复位指示灯	Y000		
停止按钮	X001	指示灯 L1	Y001		
		指示灯 L2	Y002		
		指示灯 L3	Y003		
		指示灯 L4	Y004		
		指示灯 L5	Y005		
		DN 指示灯	Y006		
		液压装置指示灯	Y007		

用三菱可编程控制器实现的自动轧钢机模拟控制系统的输入/输出接线如图 6-25 所示。

图 6-25 自动轧钢机模拟控制系统的 I/O 接线图

实训操作过程

- (1)利用 GX Developer 编程软件来编制"自动轧钢机"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察各个指示灯的变化。

(1) 梯形图。自动轧钢机模拟控制系统的梯形程序图如图 6-26 所示。

6

10

11

OVT

LD

OR

TO

ΤO

Y006

K20

21

22

23

ANI

ANT

OVT

M2

X001

Y001

24	OVT	T2	K20	41	ANI	X001	
27	OVT	M1		42	OUT	Y004	
28	LD	T2		43	Ουτ	Y007	
29	OR	¥002		44	Ουτ	MЗ	
30	ANI	MЗ		45	ουτ	T4	K20
31	ANI	X001		48	LD	T4	
32	OVT	¥002		49	OR	¥005	
33	OVT	¥003		50	ANI	X001	
34	OVT	ТЗ	K20	51	ANI	M6	
37	OVT	M2		52	Ουτ	Y005	
38	LD	ТЗ		53	Ουτ	M4	
39	OR	Y004		54	ουτ	T20	K20
40	ANI	M4		57	END		

实训九 物料混合的 PLC 模拟控制

(1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和 调试。

(2) 对物料混合的工作原理有初步的了解。

(3) 了解用 PLC 解决一个实际问题的全过程。

- (1) 三菱主机单元一台。
- (2) 物料混合模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

按下启动按钮,阀门 A 中液体流入容器中,指示灯 L1 亮; 2s 后,中限位指示灯 S 亮, 阀门 A 闭合,指示灯 L1 灭,同时液体 B 流入容器中,指示灯 L2 亮; 12s 后,中限位指示灯 S 灭,高限位指示灯 H 亮,此时阀门 B 闭合,指示灯 L2 灭,同时电机 M 开始工作,指示灯 L4 亮,搅拌 60s 后,出料口阀门 C 打开,指示灯 L3 亮, 1s 后低限位指示灯 L 亮, 5s 后,阀门 C 闭合,指示灯 L3 灭,之后重复上述工作。按下停止按钮,系统停止工作。

- 98 -

2. 系统控制模板

物料混合模拟控制系统的模板示意图如图 6-27 所示。

图 6-27 物料混合模拟控制系统的模板示意图

物料混合模拟控制系统的输入/输出分配如表 6-9 所示。

	表 6-9	物料混合模拟控制系统的 I/O	分配表
--	-------	-----------------	-----

	信号	输出信号			
名称	名称 输入点编号		输出点编号		
启动按钮	X000	低限位模拟指示灯 L	Y000		
停止按钮 X001		高限位模拟指示灯 H	Y001		
		中限位模拟指示灯 S	Y002		
		阀门模拟指示灯 L1	Y003		
		阀门模拟指示灯 L2	Y004		
		阀门模拟指示灯 L3	Y005		
		电机模拟指示灯 L4	Y006		

用三菱可编程控制器实现的物料混合模拟控制系统的输入/输出接线如图 6-28 所示。

图 6-28 物料混合模拟控制系统的 I/O 接线图

实训操作过程

- (1)利用 GX Developer 编程软件来编制"物料混合"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察实训现象。

(1) 梯形图。物料混合模拟控制系统的梯形程序图如图 6-29 所示。

图 6-29 物料混合模拟控制系统的梯形程序图(续)

(2)	指今表如下所示.	
	1 H V AX XH I 77171V	

0	LD	X000		19	MPP		
1	OR	M10		20	OUT	Y001	
2	OR	M1		21	OVT	T1	K120
3	ANI	X001		24	LD	MЗ	
4	ANI	M2		25	OVT	¥005	
5	OVT	M1		26	LD	M2	
6	OVT	Y000		27	AND	T1	
7	OVT	TO	K20	28	OR	MЗ	
10	LD	M2		29	ANI	M4	
11	OVT	Y004		30	MPS		
12	LD	M1		31	ANI	X001	
13	AND	TO		32	OVT	MЗ	
14	OR	M2		33	MPP		
15	ANI	MЗ		34	OVT	¥002	
16	MPS			35	OVT	T2	K600
17	ANI	X001		38	LD	MЗ	
18	OVT	M2		39	AND	T2	

40	OR	M4		53	AND	T3	
41	ANI	T4		54	OR	M5	
42	MPS			55	ANI	T4	
43	ANI	X001		56	MPS		
44	OVT	M4		57	ANI	X001	
45	MPP			58	OVT	MS	
46	OVT	¥003		59	MPP		
47	OVT	T3	K10	60	OUT	T4	K50
50	LD	M5		63	LD	Y006	
51	OVT	¥006		64	PLF	M10	
52	LD	M4		66	 FNT		
				00	PUD		

实训十 四层电梯的 PLC 模拟控制

- (1) 掌握四层电梯的控制原理。
- (2) 完成电梯运行控制程序设计,利用电梯的模板完成操作训练。
- (3) 通过本实训提高学生的逻辑能力,掌握 PLC 控制系统的一般设计和安装方法。

实训器材

- (1) 三菱主机单元一台。
- (2) 四层电梯模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

面板上 SQ1~SQ4 分别是电梯到位信号,Q1~Q4 分别是电梯的位置指示灯,轿厢内的按 钮为电梯的控制按钮,L1~L4 为按钮指示灯。上行、下行两个灯为电梯状态指示灯。1Fu~ 4Fu 分别为电梯外呼叫按钮。L5~L10 是它们相应的按钮指示灯。

本控制任务中主要有两种运动的控制,一种是电梯轿厢的开、关门控制,由于要求能进 行快速和慢速控制,因此可以采用直流电机驱动,并根据控制要求对其进行调速。另一种是电 梯轿厢在井道中的上下运动,也要求能稳速运行,在平层前进行减速,在交流双速电梯中一般 采用专用的双速笼型交流异步电动机拖动。

整个系统的控制以 PLC 为核心通过编制程序实现,而基站门厅和轿厢内的楼层显示,也可用 PLC 专用的七段码显示指令编程驱动七段显示器实现。

2. 系统控制模板

四层电梯模拟控制系统的模板示意图如图 6-30 所示。

图 6-30 四层电梯模拟控制系统的模板示意图

四层电梯模拟控制系统输入/输出分配如表 6-10 所示。

表 6-10 四层电梯模拟控制系统的 I/O 分配

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
一楼	X000	L1	Y000		
二楼	X001	L2	Y001		
三楼	X002	L3	Y002		
四楼	X003	L4	Y003		
1Fu	X004	L5	Y004		
2Fu	X005	L6	Y005		
2Fd	X006	L7	Y006		
3Fu	X007	L8	Y007		
3Fd	X010	L9	Y010		
4Fd	X011	L10	Y011		

			头权		
输入	、信号	输出信号			
名称	输入点编号	名称	输出点编号		
SQ1	X012	Q1	Y012		
SQ2	X013	Q2	Y013		
SQ3	X014	Q3	Y014		
SQ4	X015	Q4	Y015		
		上行	Y016		
		下行	Y017		

(赤主

用三菱可编程控制器实现的四层电梯模拟控制系统的输入/输出接线如图 6-31 所示。

图 6-31 四层电梯模拟控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"四层电梯"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 观察实训现象。

- 105 -

第六章 PLC 的应用实训

	Y007 Y012 Y012 Y010							
108								TEND
		图 (22	шы	나 1년 1년 1년 1년	うわずはみ	アロウ肉	(h^{\pm})	[
		图 6-32	四层	电饰快拟控	2 制系统的(标)	形程序图	(绥)	
(2)	指令表如	如下所示:						
0	LD	M8002	37	LD	X004	73	LD	X003
1	OR	X012	38	OR	Y004	74	OR	¥003
2	OR	Y012	39	ANI	Y012	75	ANI	Y015
3	ITA	X013	40	OUT	Y004	76	OVT	¥003
4	ANT	X014	41	LD	X005	77	LD	¥003
5	ANI	X015	42	OR	Y005	78	OR	Y011
6	ANI	Y013	43	ANI	Y013	79	LD	¥002
7	ANI	Y014	44	OUT	Y005	80	OR	¥007
8	ANI	Y015	45	LD	X006	81	ORI	Y010
9	OUT	Y012	46	OR	Y006	82	LD	Y001
10	LD	X013	47	ANI	Y013	83	OR	¥005
11	OR	Y013	48	OVT	Y006	84	OR	¥006
12	ANI	X012	49	LD	X007	85	ANI	¥013
13	ANI	X014	50	OR	Y007	86	ORB	
14	ANI	X015	51	ANI	Y014	87	ANI	Y014
15	ANI	Y012	52	OUT	Y007	88	ORB	
16	ANI	Y014	53	LD	X010	89	ANI	Y015
17	ANI	Y015	54	OR	Y010	90	ANI	Y017
18	OVT	Y013	55	ANI	Y014	91	OVT	Y016
19	LD	X014	56	OUT	Y010	92	LD	Y004
20	OR	Y014	57		X011	93	OR	Y000
21	ANI	X012	58	OR	Y011	94	LD	Y001
22	ANI	X013	59	ANI	1015	95	OR	Y005
23	ANI	X015	60	OUT	YU11 WOOD	96	OR	Y006
24	ANI	1012 Note	61	ш П	XUUU	97	LD	Y002
25	ANI	1013	62	UK	TUUU	98	OR	Y007
26	ANI	1015	63	ANI	1012	99	OR	Y012
21		1014	64 65		IUUU VOO1	100	UK	1010 VO14
20	OD UT	X015	00	OB TTI	X001 X001	101	ANI	1014
28 20	ANT.	1015 V019	00 67	ANT OK	1001 V012	102	UKB	VO12
21	ANT	X012 X013	go	0107	1013 V001	103	ANL	1013
30	YNT YNT	X013 X014	60 60	501 TD	1001 ¥002	104	UKD	¥010
32	YNT YNT	X014 X012	70	OR UR	X002 X002	105	ANT	1012
34	ANT	Y013	71	ANT	Y014	105	ANT OILL	1015
35	ANT	Y014	72		Y002	100	EMD .	1011
36		Y015	12	001	1002	100	LHD	
50	001	1010						

6

实训十一 花式喷泉的 PLC 模拟控制

- (1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和调试。
- (2) 对花式喷泉的工作原理有初步的了解。
- (3) 了解用 PLC 解决一个实际问题的全过程。

- (1) 三菱主机单元一台。
- (2) 花式喷泉模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

按下启动按钮后,花式喷泉按如下方式循环: 高水柱 5s→停 1s→单号低水柱 5s→停 1s→ 双号低水柱 5s→停 1s→高、低水柱同时 5s→停 1s, 重复上述过程。

按下停止按钮,喷泉停止喷水。

2. 系统控制模板

花式喷泉模拟控制系统的模板示意图如图 6-33 所示。

图 6-33 花式喷泉模拟控制系统的模板示意图

花式喷泉模拟控制系统的输入/输出分配如表 6-11 所示。

	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	低水柱电磁阀指示灯 L1	Y000		
停止按钮	X001	低水柱电磁阀指示灯 L2	Y001		
		低水柱电磁阀指示灯 L3	Y002		
		低水柱电磁阀指示灯 L4	Y003		
		低水柱电磁阀指示灯 L5	Y004		
		低水柱电磁阀指示灯 L6	Y005		
		低水柱电磁阀指示灯 L7	Y006		
		低水柱电磁阀指示灯 L8	Y007		
		高水柱电磁阀指示灯 L9	Y010		

表 6-11 花式喷泉模拟控制系统的 I/O 分配表

用三菱可编程控制器实现的花式喷泉模拟控制系统的输入/输出接线如图 6-34 所示。

图 6-34 花式喷泉模拟控制系统的 I/O 接线图

109 -

实训操作过程

11

- (1)利用 GX Developer 编程软件来编制"花式喷泉"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 观察实训现象。

(1) 梯形图。花式喷泉模拟控制系统的梯形程序图如图 6-35 所示。

图 6-35 花式喷泉模拟控制系统的梯形程序图(续)

(2)	10 4 10 14	1 //1/1/1					
0	LD	M8002		46	MOV	KO	K2Y000
1	OR	X001		51	LD	TO	
2	MOV	K85	DO	52	OVT	CO	K1
7	MOV	KO	K2Y000	55	OVT	C1	К2
12	MOV	KO	K1Y010	58	OVT	C2	КЗ
17	ZRST	CO	C3	61	OVT	C3	K4
22	LD	X000		64	LD	C3	
23	OR	T1		65	RST	CO	
24	ANI	CO		67	RST	C1	
25	ANI	Y000		69	RST	C2	
26	LD	C2		71	LD	TO	
27	AND	T1		72	OR	M1	
28	ORB			73	ANI	X001	
29	MOV	K1	K1Y010	74	ANI	T1	
34	LD	Y010		75	OVT	T1	К10
35	OR	Y000		78	OVT	M1	
36	OR	Y001		79	LD	T1	
37	OVT	то	K50	80	ANI	C1	
40	LD	то		81	ANI	C3	
41	MOV	KO	K1Y010	82	MOVP	DO	K2Y000

(a)	
(2)	指令衣如下所不:

可编程控制器实验与实训教程

87 88	LD ANTI	T1 C1		97 98	ANI MOVP	C3 K255	K2Y000
89	ANI	C2		103		C3	
90	CML	DO	K2Y000	104	AND	T1	
95	LD	C2		105	RST	C3	
96	AND	T1		107	END		

实训十二 大小球分拣系统的 PLC 模拟控制

(1) 掌握大小球分拣系统的控制原理。

- (2) 掌握三菱 PLC 基本指令的应用。
- (3) 通过本实训提高学生的逻辑能力,掌握 PLC 控制系统的一般设计和安装方法。

实训器材

- (1) 三菱主机单元一台。
- (2) 大小球分拣系统模拟控制单元一台。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

系统开机运行后,自动检测分拣杆是否处于原 始位置,它的工作顺序是先向下,抓球,向上,向 右运行,向下,释放,向上和向左上点(原点),它 们的时间均为 1s。分拣杆的垂直运动和横向运动不 能同时进行。工作流程如图 6-36 所示。

由系统工作流程图可以看出,系统存在两个可选择的分支,选择条件为电磁铁吸住的是大球还是小球,即行程开关 SQ2 是否压合。

当 SQ2 未压合时,电磁铁吸住的是大球,系统 选择将球运往大球容器箱的分支;当 SQ2 压合时, 电磁铁吸住的是小球,系统选择将球运往小球容器 箱的分支。

左、右分别由 Y4、Y3 控制,上升、下降分别 由 Y2、Y0 控制,将球吸住由 Y1 控制。

- 112 -

2. 系统控制模板

大小球分拣模拟控制系统的模板示意图如图 6-37 所示。

图 6-37 大小球分拣模拟控制系统的模板示意图

大小球分拣模拟控制系统的输入输出分配如表 6-12 所示。

表 6-12 大小球分拣模拟控制系统的 I/O 分配表

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	分拣杆左移指示灯	Y004		
分拣杆左限位	X001	分拣杆右移指示灯	Y003		
分拣杆小球容器限位	X004	分拣杆上升指示灯	Y002		
分拣杆大球容器限位	X005	分拣杆下降指示灯	Y000		
分拣杆上限位	X003	电磁铁控制指示灯	Y001		
分拣杆下限位	X002	原点指示灯	Y005		

用三菱可编程控制器实现的大小球分拣模拟控制系统的输入/输出接线如图 6-38 所示。

图 6-38 大小球分检模拟控制系统的 I/O 接线图

实训操作过程

- (1)利用 GX Developer 编程软件来编制"大小球分拣"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察实训现象。

(1) 梯形图。大小球分拣模拟控制系统的梯形程序图如图 6-39 所示。

- 114 -

第六章 PLC 的应用实训

-115 -

(2)指令表如	叩下所示:								
0	LD	X000		29	OVT	TЗ	K10	64	LDI	T2
1	OR	MO		32	LD	ТЗ		65	AND	T1
2	ANI	X006		33	OVT	T4	K10	66	LDI	T6
3	OUT	MO		36	LD	T4		67	AND	T5
4	LD	MO		37	OVT	T5	K10	68	ORB	
5	ANI	T8		40	LD	T5		69	OVT	¥002
6	OUT	TO	K10	41	OVT	T6	K10	70	LD	M1
9	LD	X002		44	LD	T6		71	ANI	TЗ
10	OR	M2		45	OVT	T7	K10	72	OUT	¥003
11	ANI	T8		48	LD	T7		73	LD	T4
12	OVT	M2		49	OVT	T8	K10	74	ANI	T5
13	LD	X000		52	LDI	TO		75	RST	¥001
14	OR	M2		53	AND	MO		76	LD	T6
15	OVT	T1	K10	54	LDI	T4		77	ANI	T7
18	LD	T1		55	AND	T 3		78	OUT	Y004
19	OVT	T2	K10	56	ORB			79	LD	X000
22	LD	M2		57	OVT	Y000		80	LDI	T7
23	OR	X005		58	LDI	T1		81	AND	T8
24	OR	M1		59	AND	M2		82	ORB	
25	AND	X004		60	LDI	T1		83	ANI	¥000
26	AND	T2		61	AND	TO		84	OUT	¥005
27	OVT	M1		62	ORB			85	END	
28	LD	M1		63	SET	Y001				

实训十三 机械手的 PLC 模拟控制

(1)通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和 调试。

- (2) 了解机械手的工作原理。
- (3) 进一步掌握顺序控制设计法的方法和技巧。
- (4) 了解用 PLC 解决一个实际问题的全过程。

实训器材

- (1) 三菱主机单元一台。
- (2) 机械手模拟控制单元一块。
- (3) 计算机一台。

(4) 连接导线若干。

1. 实训任务及分析

机械手电气控制系统,除了有多工步的特点之外,还要求有连续控制和手动控制等操作方式。 工作方式的选择可以很方便地在操作面板上表示出来。当旋钮打回原点时,系统自动回到左上角 位置待命。当旋钮打向自动时,系统自动完成各工步操作,且循环动作。当旋钮打向手动时,每 一工步都要按下该工步的旋钮才能实现。机械手的传送工件系统示意图如图 6-40 所示。

图 6-40 机械手的传送工件系统示意图

当旋钮打向自动时,在原点位置按下启动按钮,连续反复地运行。若中途按下停止按钮, 运行到原点后停止;当旋钮打向手动时,只有按下各自负载的旋钮才能向下运行。工作流程如 下所示:

2. 系统控制模板

机械手模拟控制系统的模拟示意图如图 6-41 所示。

图 6-41 机械手模拟控制系统的模拟示意图

机械手模拟控制系统的输入/输出分配表如 6-13 所示。

表 6-13 机械手模拟控制系统的 I/O 分配表

输入	信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动按钮	X000	输送带 A 指示灯	Y000		
停止按钮	X001	手臂左旋指示灯	Y001		
		手臂右旋指示灯	Y002		
		手臂上升指示灯	Y003		
		手臂下降指示灯	Y004		
		手臂抓紧指示灯	Y005		
		输送带 B 指示灯	Y006		

用三菱可编程控制器实现机械手模拟控制系统的输入/输出接线如图 6-42 所示。

图 6-42 机械手模拟控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"机械手"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。

(3) 将编制好的程序导入 PLC, 调试程序。

(4) 按下启动按钮,观察实训现象。

(1)梯形图(注:在此实验中用时间继电器来代替限位开关)。机械手模拟控制系统的梯形程序图如图 6-43 所示。

- 119 -

_____120 -

(2)指令表如	如下所示:								
0	LD	M8	29	OR	MS		64	OVT	тз	K10
1	AND	T7	30	ANI	MG		67	LD	M5	
2	OR	MO	31	OVT	M5		68	OUT	T4	K10
3	OR	M8002	32	LD	M5		71	LD	M6	
4	ANI	M1	33	AND	T4		72	OVT	T5	K10
5	OUT	MO	34	OR	M6		75	LD	M7	
6	LD	MO	35	ANI	M7		76	OVT	T6	K10
7	AND	X000	36	OVT	M6		79	LD	M8	
8	OR	M10	37	LD	M6		80	OVT	T7	K10
9	OR	M1	38	AND	T5		83	LD	M9	
10	ANI	M2	39	OR	M8		84	OVT	Y001	
11	OVT	M1	40	ANI	M8		85	LD	M2	
12	LD	M1	41	OVT	M7		86	OR	M6	
13	AND	TO	42	LD	M7		87	OVT	¥002	
14	OR	M2	43	AND	T6		88	LD	MЗ	
15	ANI	MЗ	44	OR	M8		89	OR	M7	
16	OUT	M2	45	ANI	M9		90	OUT	Y003	
17	LD	M2	46	OVT	M8		91	LD	M7	
18	AND	T1	47	LD	M1		92	OUT	Y004	
19	OR	MЗ	48	OR	M9		93	LD	M5	
20	ANI	M4	49	ANI	M5		94	OVT	Y005	
21	OUT	MЗ	50	OVT	M9		95	LD	M4	
22	LD	MЗ	51	LD	M1		96	OR	M8	
23	AND	T2	52	OVT	TO	K10	97	OVT	Y000	
24	OR	M4	55	LD	M2		98	LD	M8	
25	ANI	M5	56	OVT	T1	K10	99	PLF	M10	
26	OVT	M4	59	LD	MЗ		101	END		
27	LD	M4	60	OVT	T2	K10				
28	ANTI	Т3	63	LD	M4					

试用步进梯形指令实现机械手的控制。

实训十四 广告牌装饰灯的 PLC 模拟控制

(1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和调试。

(2) 掌握广告牌装饰灯的工作原理。

(3) 了解用 PLC 解决一个实际问题的全过程。

(实训器材)

- (1) 三菱主机单元一台。
- (2) 广告牌装饰灯模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

1. 实训任务及分析

一广告牌四周边框有16盏装饰灯,要求:

(1) 按下启动按钮 SB1, 16 盏装饰灯 HL1~HL16 以 1s 的时间间隔正序依次流水点亮,循环两次。

(2) HL1~HL16 以 1s 的时间间隔反序依次流水点亮,循环两次。

(3) HL1~HL16 以 0.5s 的时间间隔依次正序点亮,直至全亮后再以 0.5s 的时间间隔反 序依次熄灭,完成一次大循环。

(4) 按上述过程不断循环,直至按下停止按钮 SB2, 16 盏装饰灯全部熄灭。

2. 系统控制模板

广告牌装饰灯模拟控制系统的模板示意图如图 6-44 所示。

图 6-44 广告牌装饰灯模拟控制系统的模板示意图

广告牌装饰灯模拟控制系统的输入/输出分配如表 6-14 所示。

输入	、信号	输出信号				
名称		名称	输出点编号			
启动按钮	X000	装饰模拟指示灯 L1	Y000			
停止按钮	X001	装饰模拟指示灯 L2	Y001			
		装饰模拟指示灯 L3	Y002			
		装饰模拟指示灯 L4	Y003			
		装饰模拟指示灯 L5	Y004			
		装饰模拟指示灯 L6	Y005			
		装饰模拟指示灯 L7	Y006			
		装饰模拟指示灯 L8	Y007			
		装饰模拟指示灯 L9	Y010			
		装饰模拟指示灯 L10	Y011			
		装饰模拟指示灯 L11	Y012			
		装饰模拟指示灯 L12	Y013			
		装饰模拟指示灯 L13	Y014			
		装饰模拟指示灯 L14	Y015			
		装饰模拟指示灯 L15	Y016			
		装饰模拟指示灯 L16	Y017			

表 6-14 广告牌装饰灯模拟控制系统的 I/O 分配表

用三菱可编程控制器实现的广告牌装饰灯模拟控制系统的输入/输出接线如图 6-45 所示。

图 6-45 广告牌装饰灯模拟控制系统的 I/O 接线图

实训操作过程

11

- (1)利用 GX Developer 编程软件来编制"广告牌装饰灯"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮,观察实训现象。

(1) 梯形图。广告牌装饰灯模拟控制系统的梯形程序图如图 6-46 所示。

- 124 ·

第六章 PLC 的应用实训 6

- 125 ----

12	LD	M10		79	ANI	C1			
13	MOVP	KO	K4Y000	80	RORP	K4Y000	K1		
18	RST	CO		85	LD	Y000			
20	RST	C1		86	PLF	M40			
22	RST	C2		88	LD	M40			
24	LD	MO		89	OVT	C1	K2		
25	ANI	CO		92	SRET				
26	MOVP	K1	K4Y000	93	LD	M30			
31	CALL	PO		94	OUT	M20			
34	LD	CO		95	LD	M8012			
35	ANI	C1		96	ANI	M30			
36	MOVP	K-32768	K4Y000	97	ANI	C2			
41	OVT	TO	K10	98	SFTLP	M20	Y000	K16	K1
44	AND	TO		107	LD	Y017			
45	CALL	P1		108	OR	M30			
48	LD	C1		109	AND	Y000			
49	ANI	C2		110	ANI	C2			
50	MOVP	KO	K4Y000	111	OVT	M30			
55	OVT	T1	K10	112	LD	M30			
58	AND	T1		113	AND	M8012			
59	CALL	P2		114	ANI	C2			
62	FEND			115	SFTRP	M20	Y000	K16	K1
63	LD	M8013		124	LD	Y000			
64	ANI	CO		125	PLF	M13			
65	ROLP	K4Y000	K1	127	LD	M13			
70	LD	Y017		128	AND	C1			
71	OVT	CO	K2	129	OVT	C2	K1		
74	LD	Y001		132	LD	C2			
75	RST	C2		133	RST	C1			
77	SRET			135	SRET				
78	LD	M8013		136	END				

实训十五 全自动洗衣机的 PLC 模拟控制

- (1) 掌握全自动洗衣机的控制原理。
- (2) 进一步掌握步进指令的应用。

(1) 三菱主机单元一台。

(2) 全自动洗衣机模拟控制单元一块。

(3) 计算机一台。

(4) 连接导线若干。

1. 实训任务及分析

按下启动按钮后,进水电磁阀打开,开始进水,达到高水位时停止进水,进入洗涤状态。 洗涤时内桶正转洗涤 15s,暂停 3s,再反转洗涤 15s,暂停 3s,又正转洗涤 15s,暂停 3s,如 此循环反复 30 次。洗涤结束后,排水电磁阀打开,进入排水状态。当水位下降到低水位时, 进入脱水状态(同时排水),脱水时间为 10s。这样完成从进水到脱水的一个大循环。经过 3 次上述大循环后,洗衣机自动报警,报警 10s 后,自动停机结束全过程。

洗衣机的进水和排水由进水电磁阀和排水电磁阀控制。进水时,洗衣机将水注入外桶; 排水时,将水从外桶排出机外。外桶(固定,用于盛水)和内桶(可旋转,用于脱水)是以同 一中心安装的。洗涤和脱水由同一台电动机拖动,通过脱水电磁离合器来控制,将动力传递到 洗涤波轮或内桶。脱水电磁离合器失电,电动机拖动洗涤波轮实现正、反转,开始洗涤;脱水 电磁离合器得电,电动机拖动内桶单向旋转,进行脱水(此时波轮不转)。

2. 控制流程图

全自动洗衣机控制流程图如图 6-47 所示。

全自动洗衣机模拟控制系统的输入/输出分配如表 6-15 所示。

表 6-15 全自动洗衣机模拟控制系统的 I/O 分配表

输入	信号	输出信号			
名称		名称	输出点编号		
启动按钮	X000	进水电磁阀指示灯	Y000		
停止按钮	X001	电机正转接触器指示灯	Y001		
排水按钮	X002	电机反转接触器指示灯	Y002		
高水位开关	X003	排水电磁阀指示灯	Y003		
低水位开关	X004	脱水电磁离合器指示灯	Y004		
		报警蜂鸣器指示灯	Y005		

用三菱可编程控制器实现的全自动洗衣机模拟控制系统的输入/输出接线如图 6-48 所示。

图 6-48 全自动洗衣机的 I/O 接线图

实训操作过程

- (1)利用 GX Developer 编程软件来编制"全自动洗衣机"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。

- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 按下启动按钮、排水按钮和停止按钮观察实验现象。

(1) 梯形图。全自动洗衣机模拟控制系统的梯形程序图如图 6-49 所示。

- 130 -
| (2 |)指令表如 | 如下所示: | | | | | | | | | |
|----|-------|-------|------|----|-----|------|-----|----|-----|------|------|
| 0 | LD | M8002 | | 33 | ANI | Y001 | | 64 | ANI | ¥002 | |
| 1 | SET | SO | | 34 | OUT | ¥002 | | 65 | OVT | Y001 | |
| 3 | STL | SO | | 35 | LD | T2 | | 66 | MPP | | |
| 4 | LD | X000 | | 36 | SET | S24 | | 67 | OUT | Y004 | |
| 5 | SET | S20 | | 38 | STL | S24 | | 68 | OUT | T4 | K100 |
| 7 | STL | S20 | | 39 | OVT | T3 | K30 | 71 | OUT | C1 | KЗ |
| 8 | LDI | X001 | | 42 | OVT | CO | K30 | 74 | LD | T4 | |
| 9 | OVT | Y000 | | 45 | LD | T3 | | 75 | ANI | C1 | |
| 10 | LD | X001 | | 46 | ANI | CO | | 76 | OUT | S20 | |
| 11 | SET | S21 | | 47 | OVT | S21 | | 78 | LD | T4 | |
| 13 | STL | S21 | | 49 | LD | TЗ | | 79 | AND | C1 | |
| 14 | OVT | TO | K150 | 50 | AND | CO | | 80 | SET | S27 | |
| 17 | ANI | ¥002 | | 51 | SET | S25 | | 82 | STL | S27 | |
| 18 | OVT | Y001 | | 53 | STL | S25 | | 83 | OUT | Y005 | |
| 19 | LD | TO | | 54 | RST | CO | | 84 | OUT | T5 | K100 |
| 20 | SET | S22 | | 56 | ANI | X002 | | 87 | RST | C1 | |
| 22 | STL | S22 | | 57 | OVT | Y003 | | 89 | LD | T5 | |
| 23 | OVT | T1 | K30 | 58 | LD | X002 | | 90 | OUT | SO | |
| 26 | LD | T1 | | 59 | SET | S26 | | 92 | RET | | |
| 27 | SET | S23 | | 61 | STL | S26 | | 93 | END | | |
| 29 | STL | S23 | | 62 | OVT | Y003 | | | | | |
| 30 | OUT | T2 | K150 | 63 | MPS | | | | | | |

(1) 将梯形图转换成 SFC。

(2) 试用经验设计法编写梯形图程序。

实训十六 工业自动清洗机的 PLC 模拟控制

(1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和调试。

- (2) 对工业自动清洗机的工作原理有初步的了解。
- (3) 了解用 PLC 解决一个实际问题的全过程。

- (1) 三菱主机单元一台。
- (2) 工业自动清洗机模拟控制单元一块。

(3) 计算机一台。

(4) 连接导线若干。

1. 实训任务及分析

在工业现场有一种自动清洗机,工作时将需要清洗的部件放在小车上,按启动按钮后,小车自动进入清洗池指定位置 A,首先加入酸性洗料,小车继续前行到另一个位置 B,然后返回到位置 A,打开排酸阀门将酸性洗料放出,完成一次酸洗后,再加入碱性洗料,清洗过程与酸洗相同。等碱性洗料完全放出后,小车从位置 A 回到起始位置,等待下次启动信号

装完需要清洗的工件,按下启动按钮 SB1,KM1 吸合小车前进(指示灯 L1 亮),到达限 位 SQ1 位置停止,KM3 吸合加入酸性洗料 5 分钟(指示灯 L2 亮),KM1 吸合小车继续前进 (指示灯 L1 亮),到达限位 SQ2 位置停止,KM2 吸合小车后退(指示灯 L3 亮)至 SQ1 位置, KM5 吸合放出酸性洗料 5 分钟(指示灯 L4 亮),KM4 吸合加入碱性洗料 5 分钟(指示灯 L5 亮),KM1 吸合小车继续前进(指示灯 L1 亮),到达限位 SQ2 位置停止,KM2 吸合小车后退 (指示灯 L3 亮)至 SQ1 位置,KM6 吸合放出碱性洗料 5 分钟(指示灯 L6 亮),KM2 吸合小 车退(指示灯 L3 亮)至初始 SQ3 位置,完成一个清洗周期。

2. 控制流程图

工业自动清洗机控制流程图如图 6-50 所示。

工业自动清洗机模拟控制系统输入/输出分配如表 6-16 所示。

	、信号	输出信号			
名称	输入点编号	名称	输出点编号		
启动开关 SB1	X000	车前进指示灯 L1	Y000		
A位置限位 SQ1	X001	加酸指示灯 L2	Y001		
B位置限位 SQ2	X002	车后退指示灯 L3	Y002		
起始位置限位 SQ3	X003	排酸指示灯 L4	Y003		
		加碱指示灯 L5	Y004		
		排碱指示灯 L6	Y005		

表 6-16 工业自动清洗机模拟控制系统的 I/O 分配表

用三菱可编程控制器实现工业自动清洗机模拟控制系统的输入/输出接线如图 6-51 所示。

- (1)利用 GX Developer 编程软件来编制"工业自动清洗机"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。

133 -

(4) 按下启动按钮,观察实训现象。

(1) 梯形图。工业自动清洗机模拟控制系统的梯形程序图如图 6-52 所示。

-135 -

(2)	指令表如	下所示:					
0	LD	M8002		35	LD	T1	
1	SET	SO		36	SET	S25	
3	STL	SO		38	STL	S25	
4	LD	X000		39	OUT	Y004	
5	SET	S20		40	OVT	T2	K3000
7	STL	S20		43	LD	T2	
8	OVT	Y000		44	SET	S26	
9	LD	X001		46	STL	S26	
10	SET	S21		47	OVT	Y000	
12	STL	S21		48	LD	X002	
13	OVT	Y001		49	SET	S27	
14	OVT	TO	K3000	51	STL	S27	
17	LD	TO		52	OVT	¥002	
18	SET	S22		53	LD	X001	
20	STL	S22		54	SET	S28	
21	OVT	Y000		56	STL	S28	
22	LD	X002		57	OVT	Y005	
23	SET	S23		58	OVT	T3	K3000
25	STL	S23		61	LD	T3	
26	OVT	Y002		62	SET	S29	
27	LD	X001		64	STL	S29	
28	SET	S24		65	OVT	¥002	
30	STL	S24		66	LD	X003	
31	OVT	Y003		67	SET	SO	
32	OVT	T1	К3000	69	RET		
35	LD	T1		70	END		

思考题

试用经验设计法设计梯形图程序。

实训十七 步进电机的 PLC 控制

(1) 通过实验掌握 PLC 控制系统的硬件电路、程序的设计方法及对编程软件的编辑和 调试。

(2) 对步进电机的工作原理有初步的了解。

(3) 了解用 PLC 解决一个实际问题的全过程。

(1) 三菱主机单元一台。

- (2) 步进电机模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

本实训为步进电机控制实验,在做此实训时必须要了解步进电机的工作原理,了解单、 双六拍及其步进电机的正反转原理。

本次实训主要是对三相反应式做单、双六拍和正反转的实验。

(1)步进电机可按快、中、慢三挡转速运转,输入脉冲频率分别为5Hz、2Hz、和1Hz, 由三个转换开关选定。

(2)步进电机能够正、反转,由两个转换开关选择转向。正、反转通电顺序如下所示。1)正转。

2) 反转。

$$\xrightarrow{V} \xrightarrow{T} V, U \xrightarrow{T} U \xrightarrow{T} U, W \xrightarrow{T} W \xrightarrow{T} W, V$$

(3) 按下启动按钮 SB1,步进电机按选定的转向和转速运转;按下停止按钮 SB2,电机 停止运转。

步进电机控制系统的输入/输出分配如表 6-17 所示。

表 6-17 步进电机控制系统的 I/O 分配表

输入	信号	输出信号				
名称	输入点编号	名称	输出点编号			
启动按钮	X000	步进电机U相	Y000			
停止按钮	X001	步进电机V相	Y001			
慢速	X002	步进电机 W 相	Y002			

输入	信号	输出信号				
名称	输入点编号	名称	输出点编号			
中速	X003					
快速	X004					
正转	X005					
反转	X006					

用三菱可编程控制器实现的步进电机控制系统的输入/输出接线如图 6-53 所示。

图 6-53 步进电机控制系统的 I/O 接线图

- (1)利用 GX Developer 编程软件来编制"步进电机"的程序。
- (2) 按照 I/O 分配,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC, 调试程序。
- (4) 观察实训现象。

(1) 梯形图。步进电机控制系统的梯形程序图如图 6-54 所示。

- 138 -

- 139 -

图 6-54 步进电机控制系统的梯形程序图(续)

(2))指令表如	下所示:					
0	LD	M8002		34	OUT	T2	K2
1	OR	M26		37	LD	TO	
2	OR	X001		38	AND	X002	
3	MOVP	KO	DO	39	LD	T1	
8	MOVP	KO	K2M10	40	AND	X003	
13	MOVP	KO	K2M10	41	ORB		
18	LD	X000		42	LD	T2	
19	OR	MO		43	AND	X004	
20	ANI	X001		44	ORB		
21	OVT	MO		45	OUT	M2	
22	LD	MO		46	LD	MO	
23	ANI	TO		47	ANI	M10	
24	OVT	TO	K10	48	ANI	M11	
27	LD	MO		49	ANI	M12	
28	ANI	T1		50	ANI	M13	
29	OUT	T1	K5	51	ANI	M14	
32	LD	MO		52	OUT	M1	
33	ANI	T2		53	LD	MO	

54	AND	M2				93	AND	X005
55	SFTLP	M1	M10	Kб	K1	94	LD	M20
64	LD	MO				95	OR	M21
65	ENCO	M10	DO	КЗ		96	OR	M25
72	LD	MO				97	AND	X006
73	DECO	DO	M20	КЗ		98	ORB	
80	LD	M20				99	OVT	Y001
81	OR	M21				100	LD	M23
82	OR	M25				101	OR	M24
83	AND	X005				102	OR	M25
84	LD	M21				103	AND	X005
85	OR	M22				104	LD	M23
86	OR	M23				105	OR	M24
87	AND	X006				106	OR	M25
88	ORB					107	AND	X006
89	OVT	Y000				108	ORB	
90	LD	M21				109	OVT	¥002
91	OR	M22				110	END	
92	OR	M23						

思考题

试用解码指令加1指令实现步进电机的控制。

实训十八 自动售货机的 PLC 模拟控制

(1) 进一步熟悉 PLC 功能指令的用法。

(2) 进一步熟练使用 GX Developer 编程软件来编制 PLC 程序,并会下载到 PLC 中调试运行。

- (1) 三菱主机单元一台。
- (2) 自动售货机模拟控制单元一块。
- (3) 计算机一台。
- (4) 连接导线若干。

有一自动售货机用于出售餐巾纸、罐装可乐、罐装雪碧和罐装牛奶,它有一个 1 元硬币 投币口,用七段码显示投币总值和购物后的剩余价值,要求实现如下功能。

(1)自动售货机中4种物品的价格分别为:餐巾纸1元,罐装可乐和罐装雪碧均为3元, 罐装牛奶为5元。

(2)当投入的硬币总值满1元时,餐巾纸指示灯亮,按餐巾纸按钮,餐巾纸阀门打开0.5s, 1包餐巾纸落下。

(3)当投入的硬币总值满 3 元时,餐巾纸、罐装可乐和罐装雪碧指示灯同时亮,按相应按钮,对应物品阀门打开 0.5s,单位对应物品落下。

(4)当投入的硬币总值满 5 元时,所有的物品指示灯同时亮,按相应按钮,对应物品阀 门打开 0.5s,单位对应物品落下。

按下退币按钮,退币电动机运转,退币感应器开始计数,退出多余的钱币后,退币电动 机停止。

根据控制任务要求,可先以投币感应器作为触发信号,用加法指令将投币值累加,存放 于指定的数据存储器中;然后通过区间比较指令,使投币累计值达到相应值时对应指示灯亮, 此时才能选购对应的物品;选购后,利用减法指令将投币累计值寄存器中的数据减去选购物品 的价格,并且在整个售后过程中由数码管显示投入的币值和购物后剩余的币值,以方便顾客选 择继续购物或者退币。

退币时,用除法指令计算应退币数,并且以退币感应器为触发信号,对已退币进行计数, 当已退币数和应退币数相等时,结束退币动作,系统复位。为了方便使用区间比较指令,退币 中的币值均以"角"为计算单位。

由控制任务可知,投入的钱币经过电子感应器,感应器记忆钱币个数,并将钱币数存入数据寄存器 D0。

用户每投入一个硬币 D0 内数据加 1,每购买一个物品则减去该物品对应的币值,可以用 二进制加、减运算指令实现,并用七段码译码指令进行解码,控制显示器正确显示投币总值和 剩余币值。投入硬币总值满一定数值时,相应物品的指示灯亮,则可用区间比较指令实现。退 币动作由退币电动机控制,并由退币感应器记录退币的数量,准确地退出多余的钱币。

自动售货机模拟控制系统的输入/输出分配如表 6-18 所示。

	信号	输出信号			
名称	输入点编号	名称	输出点编号		
投币口按钮 SB1	X000	餐巾纸出口	Y000		
餐巾纸选择按钮 SB2	X001	可乐出口	Y001		

表 6-18 自动售货机模拟控制系统的 I/O 分配表

	信号	输出信号			
名称	输入点编号	名称	输出点编号		
可乐选择按钮 SB3	X002	雪碧出口	Y002		
雪碧选择按钮 SB4	X003	牛奶出口	Y003		
牛奶选择按钮 SB5	X004	退币电磁铁	Y004		
退币按钮 SB6	X005	退币电机	Y005		
退币感应器 SB7	X006	七段数码管	Y010~Y017		
		餐巾纸指示灯	Y020		
		可乐指示灯	Y021		
		雪碧指示灯	Y022		
		牛奶指示灯	Y023		

续表

用三菱可编程控制器实现自动售货机模拟控制系统的输入/输出接线如图 6-55 所示。

图 6-55 自动售货机模拟控制系统的 I/O 接线图

实训操作过程

11

- (1)利用 GX Developer 编程软件来编制"自动售货机"的程序。
- (2) 按照 I/O 分配表,连接 PLC 和实验模块的连线,检查无误后,接通电源。
- (3) 将编制好的程序导入 PLC,调试程序。
- (4) 观察实训现象。

(1) 梯形图。自动售货机模拟控制系统的梯形程序图如图 6-56 所示。

图 6-56 自动售货机模拟控制系统的梯形程序图(续)

- 145 -

(2)	指令表如	下所示:								
0	LD	X000				93	OR	Y001		
1	ADDP	DO	K10	DO		94	MPS			
8	LD	M8000				95	ANI	T1		
9	ZCP	K10	K20	DO	M1	96	OVT	Y001		
18	ZCP	K30	K49	DO	M11	97	MPP			
27	SEGD	DO	K2Y010			98	OUT	T1	K5	
32	LD	M2				101	LD	M32		
33	OR	M12				102	OR	¥002		
34	OR	M13				103	MPS			
35	OVT	Y020				104	ANI	T2		
36	LD	M12				105	OUT	¥002		
37	OR	M13				106	MPP			
38	OVT	Y021				107	OUT	T2	К5	
39	OVT	Y022				110	LD	M33		
40	LD	M13				111	OR	¥003		
41	OVT	Y023				112	MPS			
42	LD	X001				113	ANI	ТЗ		
43	AND	Y020				114	OUT	¥003		
44	PLS	M30				115	MPP			
46	LD	X002				116	OUT	ТЗ	К5	
47	AND	Y021				119	LD	X005		
48	PLS	M31				120	OR	M50		
50	LD	X003				121	ANI	X000		
51	AND	¥022				122	OUT	M50		
52	PLS	M32				123	LD	X006		
54		X004 X022				124	AND	X004		
55	AMD DIC	1023				125	INCP	D20		
30 E0	TD TD	mbb Mbb				128	SUBP	KO	K10	DO
50	CIDD	mou DO	V10	то		135	LD	M50		
55		DO 1021	RIO	10		136	DIVP	DO	K10	D2
67	08	H 20				143	LD	X005		
69	CIRP	m32 DO	120	то		144	OR	M50		
75		M33 D0	1.50	10		145	CMP	D2	D20	M20
76	SIBP	ш00 ТО	K2 0	то		152	AND	M20		
93	TD	M30 D0	1.00	10		153	OVT	¥004		
84	OR	¥000				154	OVT	¥005		
85	MPS	1000				155	LD	M50		
86	ANT	τo				156	AND	M21		
87		10 YOOO				157	ANI	¥004		
88	MPP	1000				158	ANI	¥005		
89	0100	τo	K5			159	ZRST	DO	D20	
92	ID	N31	10			164	END			
52	- <u></u>	1101								